tin | Stable | Atomic mass* | Mole | |-------------------|--------------|----------| | isotope | | fraction | | ¹¹² Sn | 111.904 818 | 0.0097 | | 114 Sn | 113.902 779 | 0.0066 | | ¹¹⁵ Sn | 114.903 342 | 0.0034 | | ¹¹⁶ Sn | 115.901 741 | 0.1454 | | 117 Sn | 116.902 952 | 0.0768 | | ¹¹⁸ Sn | 117.901 603 | 0.2422 | | ¹¹⁹ Sn | 118.903 308 | 0.0859 | | ¹²⁰ Sn | 119.902 1947 | 0.3258 | | ¹²² Sn | 121.903 439 | 0.0463 | | ¹²⁴ Sn | 123.905 2739 | 0.0579 | ^{*} Atomic mass given in unified atomic mass units, u. Half-life of redioactive isotope Less than 1 second ## Important applications of stable and/or radioactive isotopes Isotopes in medicine 1) ^{117m}Tin Stannic Diethylenetriaminepentaacetic Acid (^{117m}Sn DTPA) is used routinely for diagnostic bone imaging and treatment of bone pain caused by osteometastases. It has been found that by using ^{117m}Sn DTPA, marrow toxicity can be reduced and the therapeutic efficacy of using radionuclides is maintained. Figure 1: X-ray crystal structure of Sn (4+) DTPA Complex - 2) ^{117m}Sn is a promising radionuclide for therapeutic applications since it decays through isomeric transition with the emission of monoenergetic conversion electrons, which causes less damage to the healthy tissues and bone marrow. The properties of ^{117m}Sn make it useful for the treatment of inflammatory synovial disease (i.e. rheumatoid arthritis) and this use is currently being investigated. - 3) ¹¹²Sn is used to produce the radioisotope ¹¹³Sn. This is used for ¹¹³Sn/^{113m}indium generators for the elution of ^{113m}indium as chloride for blood pool imaging including placenta localization. - 4) 117m Sn is a medical radioisotope which is used in treating bone cancer and both 116 Sn and 117 Sn can be used in its production.